TAG

I wonder if the touch-and-go operations change the trajectory of the asteroids such that it might have missed us but it’s now kind of pushed into a collision course with earth? Probably not but it’s interesting to think about. Or terrifying. Whichever you prefer.

NASA’s Space Launch System Rocket’s “Green Run” Engine Testing By The Numbers

We continue to make progress toward the first laucnh of our Space Launch System (SLS) rocket for the Artmeis I mission around the moond. Engineers at NASA’s Stennis Space Center near Bay St. Louis, Mississippi are preparing for the last two tests of the eight-part SLS core stage Green Run test series.

The test campaign is one of the final milestones before our SLS rocket launches America’s Orion spacecraft to the Moon with the Artemis program. The SLS Green Run test campaign is a series of eight different tests designed to bring the entire rocket stage to life for the first time.

As our engineers and technicians prepare for the wet dress rehearsal and the SLS Green Run hot fire, here are some numbers to keep in mind:

212 Feet

The SLS rocket’s core stage is the largest rocket stage NASA has ever produced. From top to bottom of its four RS-25 engines, the rocket stage measures 212 feet.
35 Stories

For each of the Green Run tests, the SLS core state is installed in the historic B-2 Test Stand at Stennis. The test stand was updated to accommodate the SLS rocket stage and is 35 stories tall – or almost 350 feet!
4 RS-25 Engines

All four RS-25 engines will operate simultaneously during the Green Run Hot Fire. Fueled by the two propellant tanks, the cluster of engines will gimbal, or pivot, and fire for up to eight minutes just as if it were an actual Artemis launch to the moon.
18 Miles

The brawny SLS core stage is outfitted with three flight computers and special avionics systems that act as the brains of the rocket. It has 18 miles of cabling and more that 500 sensors and ssystems to help feed fuel and direct the four RS-25 engines.
773,000 Gallons

The stage has two huge propellant tanks that collectively hold 733,000 gallons of liquid hydrogen and liquid oxygen. The stage weighs more that 2.3 million pounds when it’s fully fueled.
114 Tanker Trucks

It’ll take 114 trucks – 54 trucks carrying liquid hydrogen and 60 trucks carrying liquid oxygen – to provide fuel to the SLS core stage.
6 Propellant Barges

A series of barges will deliver the propellant from the trucks to the rocket stage installed in the test stand. Altogether, six propellant barges will send fuel through a special feed system and lines. The propellant initially will be used to chill the feed systema nd lines to the correct cryogenic temperature. the propellant then will flow from the barges to the B-2 Test Stand and on into the stage’s tanks.
100 Terabytes

All eight of the Green Run tests and check outs will produce more than 100 terabytes of collected data that engineers will use to certify the core stage design and help verify the stage is ready for launch.

For comparison, just one terabyte is the equivalent to 500 hours of movies, 200,000 five-minute songs, or 310,000 pictures!
32,500 Holes

The B-2 Test Stand has a flame deflector that will direct the fire produced from the rocket’s engines away from the stage. Nearly 33,000 tiny, handmade holes dot the flame deflector. Why? All those minuscule holes play a huge role by directing constant streams of pressurized water to cool the hot engine exhaust.
One Epic First

When NASA conducts the SLS Green Run Hot Fire test at Stennis, it’ll be the first time that the SLS core stage operates just as it would on the launch pad. This test is just a preview of what’s to come for Artemis I!

The Space Launch System is the only rocket that can send NASA astronauts aboard NASA’s Orion spacecraft and supplies to the Moon in a single mission. The SLS core stage is a key part of the rocket that will send the first woman and the next man to the Moon through NASA’s Artemis program.

ESO 318-13: The Sparkle Galaxy

The brilliant cascade of stars through the middle of this image is the galaxy ESO 318-13 as seen by the NASA/ESA Hubble Space Telescope. Despite being located millions of light-years from Earth, the stars captured in this image are so bright and clear you could almost attempt to count them.

Credit: ESA/Hubble & NASA

Although ESO 318-13 is the main event in this image, it is sandwiched between a vast collection of bright celestial objects. Several stars near and far dazzle in comparison to the neat dusting contained within the galaxy. One that particularly stands out is located near the centre of the image, and looks like an extremely bright star located within the galaxy. This is, however, a trick of perspective. The star is located in the Milky Way, our own galaxy, and it shines so brightly because it is so much closer to us than ESO 318-13.

There are also a number of tiny glowing discs scattered throughout the frame that are more distant galaxies. In the top right corner, an elliptical galaxy can be clearly seen, a galaxy which is much larger but more distant than ESO 318-13. More interestingly, peeking through the ESO 318-13, near the right-hand edge of the image, is a distant spiral galaxy.

Galaxies are largely made up of empty space; the stars within them only take up a small volume, and providing a galaxy is not too dusty, it can be largely transparent to light coming from the background. This makes overlapping galaxies like these quite common. One particularly dramatic example of this phenomenon is the galaxy pair NGC 3314 (heic1208). 

Article text courtesy of NASA/Hubble.