The ‘Methusaleh’ Star

This Digitized Sky Survey image shows the oldest star with a well-determined age in our galaxy. Called the Methuselah star, HD 140283 is 190.1 light-years away. Astronomers refined the star’s age to about 14.3 billion years (which is older than the universe), plus or minus 800 million years. Image released March 7, 2013. (Image: © Digitized Sky Survey (DSS), STScI/AURA, Palomar/Caltech, and UKSTU/AAO)

If the universe is 13.8 billion years old, how can a star be more than 14 billion years old?

Read more here.


I wonder if the touch-and-go operations change the trajectory of the asteroids such that it might have missed us but it’s now kind of pushed into a collision course with earth? Probably not but it’s interesting to think about. Or terrifying. Whichever you prefer.

NASA’s Space Launch System Rocket’s “Green Run” Engine Testing By The Numbers

We continue to make progress toward the first laucnh of our Space Launch System (SLS) rocket for the Artmeis I mission around the moond. Engineers at NASA’s Stennis Space Center near Bay St. Louis, Mississippi are preparing for the last two tests of the eight-part SLS core stage Green Run test series.

The test campaign is one of the final milestones before our SLS rocket launches America’s Orion spacecraft to the Moon with the Artemis program. The SLS Green Run test campaign is a series of eight different tests designed to bring the entire rocket stage to life for the first time.

As our engineers and technicians prepare for the wet dress rehearsal and the SLS Green Run hot fire, here are some numbers to keep in mind:

212 Feet

The SLS rocket’s core stage is the largest rocket stage NASA has ever produced. From top to bottom of its four RS-25 engines, the rocket stage measures 212 feet.
35 Stories

For each of the Green Run tests, the SLS core state is installed in the historic B-2 Test Stand at Stennis. The test stand was updated to accommodate the SLS rocket stage and is 35 stories tall – or almost 350 feet!
4 RS-25 Engines

All four RS-25 engines will operate simultaneously during the Green Run Hot Fire. Fueled by the two propellant tanks, the cluster of engines will gimbal, or pivot, and fire for up to eight minutes just as if it were an actual Artemis launch to the moon.
18 Miles

The brawny SLS core stage is outfitted with three flight computers and special avionics systems that act as the brains of the rocket. It has 18 miles of cabling and more that 500 sensors and ssystems to help feed fuel and direct the four RS-25 engines.
773,000 Gallons

The stage has two huge propellant tanks that collectively hold 733,000 gallons of liquid hydrogen and liquid oxygen. The stage weighs more that 2.3 million pounds when it’s fully fueled.
114 Tanker Trucks

It’ll take 114 trucks – 54 trucks carrying liquid hydrogen and 60 trucks carrying liquid oxygen – to provide fuel to the SLS core stage.
6 Propellant Barges

A series of barges will deliver the propellant from the trucks to the rocket stage installed in the test stand. Altogether, six propellant barges will send fuel through a special feed system and lines. The propellant initially will be used to chill the feed systema nd lines to the correct cryogenic temperature. the propellant then will flow from the barges to the B-2 Test Stand and on into the stage’s tanks.
100 Terabytes

All eight of the Green Run tests and check outs will produce more than 100 terabytes of collected data that engineers will use to certify the core stage design and help verify the stage is ready for launch.

For comparison, just one terabyte is the equivalent to 500 hours of movies, 200,000 five-minute songs, or 310,000 pictures!
32,500 Holes

The B-2 Test Stand has a flame deflector that will direct the fire produced from the rocket’s engines away from the stage. Nearly 33,000 tiny, handmade holes dot the flame deflector. Why? All those minuscule holes play a huge role by directing constant streams of pressurized water to cool the hot engine exhaust.
One Epic First

When NASA conducts the SLS Green Run Hot Fire test at Stennis, it’ll be the first time that the SLS core stage operates just as it would on the launch pad. This test is just a preview of what’s to come for Artemis I!

The Space Launch System is the only rocket that can send NASA astronauts aboard NASA’s Orion spacecraft and supplies to the Moon in a single mission. The SLS core stage is a key part of the rocket that will send the first woman and the next man to the Moon through NASA’s Artemis program.

ESO 318-13: The Sparkle Galaxy

The brilliant cascade of stars through the middle of this image is the galaxy ESO 318-13 as seen by the NASA/ESA Hubble Space Telescope. Despite being located millions of light-years from Earth, the stars captured in this image are so bright and clear you could almost attempt to count them.

Credit: ESA/Hubble & NASA

Although ESO 318-13 is the main event in this image, it is sandwiched between a vast collection of bright celestial objects. Several stars near and far dazzle in comparison to the neat dusting contained within the galaxy. One that particularly stands out is located near the centre of the image, and looks like an extremely bright star located within the galaxy. This is, however, a trick of perspective. The star is located in the Milky Way, our own galaxy, and it shines so brightly because it is so much closer to us than ESO 318-13.

There are also a number of tiny glowing discs scattered throughout the frame that are more distant galaxies. In the top right corner, an elliptical galaxy can be clearly seen, a galaxy which is much larger but more distant than ESO 318-13. More interestingly, peeking through the ESO 318-13, near the right-hand edge of the image, is a distant spiral galaxy.

Galaxies are largely made up of empty space; the stars within them only take up a small volume, and providing a galaxy is not too dusty, it can be largely transparent to light coming from the background. This makes overlapping galaxies like these quite common. One particularly dramatic example of this phenomenon is the galaxy pair NGC 3314 (heic1208). 

Article text courtesy of NASA/Hubble.

The Lives, Times, And Deaths Of Stars

Who among us doesn’t covertly read tabloid headlines when we pass by them? OK, you don’t. But the rest of us, yeah we probably do. But if you’re really looking for a dramatic story, instead of looking to Hollywood, turn you face to the sky and check out the real stars (do not look directly into the sun). From birth to death, the burning spheres of gas that light the night sky and the one that powers our daytime lives experience the most extreme conditions our cosmos has to offer.

All stars are born in clouds of dust and gas like the Pillars of Creation in the Eagle nebula (pictured below). In these stellar nurseries, clumps of gas form, pulling in more and more mass as time passes. As they grow, these clumps start to spin and heat up. Once they get heavy and hot enough (somewhere in the realm of 27 million degrees Fahrenheit or 15 million degrees Celsius), nuclear fusion starts in their cores. This process occurs when protons, the nuclei of hydrogen atoms, squish together to form helium nuclei. This releases a LOT of energy, which heats the star and pushes against the force of gravity. And with this violent reaction, a star is born.

Credit: NASA, ESA and the Hubble Heritage Team (STScl/AURA)

From that point on, a stars lifecycle depends on how much mass they have. Scientists typically divide stars into three categories: low-mass, high-mass and the lesser used intermediate-mass. We’ll discuss the first two for simplicity’s sake.

Low-mass Stars: These stars have a mass about eight times that of our Sun’s or less and can burn steadily for billions of years. As it reaches the end of its life, its core runs out of hydrogen to convert into helium. Because the energy produced by fusion is the only force fighting gravity’s tendency to pull matter together, the core begins to collapse. But squeezing the core also increases its temperature and pressure, so much so that its helium starts to fuse into carbon, which also releases energy. The core rebounds a little, but the star’s atmosphere expands a lot. This eventually causes the star to turn into a red giant star and destroy any nearby planets. Our sun will also go through this process but it’s a few billion years away so we don’t have to worry about it just yet.

Red giants are unstable and begin pulsating, periodically inflating and ejecting some of their atmospheres. Eventually, all of the star’s out layers blow away, creating an expanding cloud of dust and gas misleadingly called a planetary nebula (there are no planets involved save for the ones that were orbiting the star and were already destroyed).

Credit: NASA, ESA and the Hubble Heritage Team (STScl/AURA)

All that’s left of the star is its core, now called a white dwarf. This star is a roughly Earth-sized stellar cinder that gradually cools over billions of years. If you could scoop up a teaspoon of its material, it would weigh more than a pickup truck. (Scientists recently found a potential planet closely orbiting a white dwarf. It somehow managed to survive the star’s chaotic, destructive history!)

High-mass Stars: These stars have a mass eight times the sun’s or more and may only live for millions of years. (Rigel, a blue super-giant in the constellation Orion, pictured below, is eighteen times the Sun’s mass.)

Credit: Rogelio Bernal Andreo

A high-mass star starts out doing the same things as a low-mass star, but it doesn’t stop at fusing helium into carbon. When the core runs out of helium in a high-mass star, it shrinks, heats up and starts converting its carbon into neon, which releases energy. Later, the core fuses the neon it produced into oxygen. Then, as the neon runs out, it fuses the oxygen into silicon. Finally, the silicon is fused into iron. All of these processes produce energy that keeps the core from collapsing, but each new fuel buys it less and less time. By the point silicon fuses into iron, the star runs out of fuel in a matter of days. The next step would be fusing iron into some heavier element, but doing so requires energy instead of releasing it.

The stars iron core collapses until forces between the nuclei push the brakes, and then it rebounds back to its original size. This change creates a shock way that travels through the star’s outer layers. The result is a huge explosion called a supernova.

What’s left behind depends on the star’s initial mass. Remember, a high-mass star is any star with a mass more than eight times that of our sun. That’s a HUGE range! A star on the lower end of this spectrum leaves behind a city-sized, super-dense neutron star. (Some of these weird objects can spin faster than blender blades and have powerful magnetic fields. A teaspoon of their material would weigh as much as a mountain!!)

At even higher masses, the star’s core turns into a black hole, one of the most bizarre cosmic objects out there. Black holes have such strong gravity that light can’t escape them. If you tried to get a teaspoon of material to weigh, you wouldn’t get it back once you crossed the event horizon — unless it could travel faster than the speed of light and we don’t know of anything that can!

The explosion also leaves behind a cloud of debris called a supernova remnant. These and planetary nebulae from low-mass stars are the sources of many of the elements we find on Earth. Their dust and gas will eventually one day become a part of other stars starting the whole process over again. So the next time you feel incredibly lost or alone, remember that we’re all connected by the star stuff we’re made from!

That’s a very brief summary of the lives, times and deaths of stars.

Article Credit: NASA Universe